Hyperspectral Unmixing Based on Nonnegative Matrix Factorization: A Comprehensive Review

نویسندگان

چکیده

Hyperspectral unmixing has been an important technique that estimates a set of endmembers and their corresponding abundances from hyperspectral image (HSI). Nonnegative matrix factorization (NMF) plays increasingly significant role to solve this problem. In article, we present comprehensive survey the NMF-based methods proposed for unmixing. Taking NMF model as baseline, show how improve by utilizing main properties HSIs (e.g., spectral, spatial, structural information). We categorize three development directions including constrained NMF, structured generalized NMF. Furthermore, several experiments are conducted illustrate effectiveness associated algorithms. Finally, conclude paper with possible future purposes providing guidelines inspiration promote

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Matrix Factorization With Data-Guided Constraints For Hyperspectral Unmixing

Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in a hyperspectral image may posses...

متن کامل

Area-Correlated Spectral Unmixing Based on Bayesian Nonnegative Matrix Factorization

To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed method, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of t...

متن کامل

Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization

Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyperspectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been modeled making use of the L1 regularizer. Unfortunately, the L1 re...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Spectral Signal Unmixing with Interior-Point Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is an unsupervised learning method that has been already applied to many applications of spectral signal unmixing. However, its efficiency in some applications strongly depends on optimization algorithms used for estimating the underlying nonnegatively constrained subproblems. In this paper, we attempt to tackle the optimization tasks with the inexact Inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2022

ISSN: ['2151-1535', '1939-1404']

DOI: https://doi.org/10.1109/jstars.2022.3175257